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FAST SOLVERS OF INTEGRAL AND 
PSEUDODIFFERENTIAL EQUATIONS 

ON CLOSED CURVES 

J. SARANEN AND G. VAINIKKO 

ABSTRACT. On the basis of a fully discrete trigonometric Galerkin method 
and two grid iterations we propose solvers for integral and pseudodifferential 
equations on closed curves which solve the problem with an optimal conver- 
gence order |IUN - ulL < cx,/,NA -[lujj,, A < H (Sobolev norms of periodic 
functions) in O(N log N) arithmetical operations. 

1. INTRODUCTION: THE PROBLEM AND THE PURPOSES 

In this paper we deal with the problem 

(1) Au= f, 
where f is a given 1-periodic function, u is a 1-periodic function which we look for, 
and A = E=4 A is a linear operator with Ap ofthe form 

1 

(Aou)(t) = /[+ (t - s)a+ (t, s) + fi?-t - s)a- (t, s)] u(s)ds, 

(2) J 1 

(Apu)(t) = ] Kp(t - s)ap(t, s)u(s)ds, p = 1,... , q. 

Here a?(t, s) and ap(t, s) are C??-smooth 1-biperiodic functions; 
,z+(t) 

and tp (t) 
are 1-periodic functions or distributions. We assume that the Fourier coefficients 

1 

k-0 (Tn) = X 0 t)e-'m2 dt = (No(t), e-im2" t T m E Z 
(3) Jo 

kpT(m) = p(t)e-im27rtdt =(Kp(t), -im27rt) n E 7Zp 1, ... , 

are known and satisfy the conditions 
O' 

<rl I lk+ (Tn) I <_ C2 rnj-o, lko+(Tn) - k+ (Tn - 1) I < clrnl-a 
(4) 

kU (m) = k+ (m) sign(m), m E 2, m # 0; 

(5) kSp(Tm)l < clI-am , m E 2, m 0 O, p = 1, ... q, 
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with some a E XR, 0 > 0 and positive constants cl, c2, c. We also assume that 

(6) b, (t) := a+ (t, t) + a- (t, t) -7 0, b2 (t) :=a+(t,t)-a-(t,t) 7 0 Vt ER, 
W(b1) = W(b2)I 

where W(bj) = 2 argb1(t)l =j is the winding number [15] of the function bj, j = 

1,2. 
A variety of problems of type (1) (6) arises from boundary integral equations 

on a smooth Jordan curve F which is parametrized by a smooth 1-periodic function 
t -* x(t) :]R -* F. For convenience of the reader we recall two specific examples in 
the following. For other examples we refer to [5], [8]-[10], [16]. 

Example 1.1. ([3], [20]) Consider the biharmonic single layer equation in the pa- 
rameter form 

(Au) (t) Ix(t) - x(s) 12 log Ix(t) - x(s) I Ix'(s) ju(s)ds = f (t) . 

We decompose the operator A as A = Ao + A1, where 
1 

(Aou) (t) = (t - s)a(t, s)u(s)ds, 

,(t) = 4 sin2 irt log(21 sin irt ), 

a (t, s)={ (t)-(S)12 7 't-s) t 7?s (mod 1), 
I X' (t) 1 

47r2 ,t=s (mo d 1), 

and the operator A1 has a smoot-h kernel, say a1 (t, s). Function ti has the Fourier 
coefficients 

IM( Ml2-1) IrTn| > 2, 
(rn) = -3/4, nz= 1, 

1, = 

In this example we have Ol = 3, 1,+j(t) = ti(t), a +(t,s) = a(t,s), a -(t,s) 0. 
Moreover we can take 3= 1 since 

lk(Tnz) _ s(Tnz _ 1)1 < CTnxl-4, nz7 

and A1 has the form given in (2) with r,(t) -1 (implying that (5) is valid for all 
,3 E ]R). Since we have a +(tlt) = Ix'(t)13/(47r2), a& (t,t) 0, the condition (6) is 
valid. Assuming (7), the operator A: HA -__ HA+3, A E R, is an isomorphism. 

Example 1.2. A large class of singular integral equations, see, e.g., [15], can be 
given in the parametric form as 

(Au)(t) := a(t)u(t) + j t,(t - s)b(t, s)u(s)ds = (t), 

where ,(t) = 1 + i cot rt and the integral is understood in the sence of Cauchy. 
Writing 

a(t)u(t) = 6(t - s)a(s)u(s)ds, 

where 6(t) is the 1-periodic Dirac distribution, we have A = Ao such that K&+(t) = 

6(t), i- (t) = 1 + i cot 7rt, aO+(t, s) = a(t), aU-(t, s) = b(t, s). Moreover, K (m) = 1, 
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m- 
E 2, ky(m) = sign(m), m 

-, 
0, kU-(0) = 1. Hence al = 0 and we can choose the 

parameter : to be an arbitrarily large positive number. 

As in the above examples, the boundary integral equations usually have non- 
positive order, which in terms of Ol means that Ol > 0, but, for example, for a 
hypersingular integral equation we have a = -1. Therefore we allow a E IR to be 
arbitrary in (4), (5). The integrals in (2) can be interpreted on the basis of the 
equalities (which follow from (3)) 

J , (t - s)eim27rsds = k;(mT)eim27rt mn E ,Z 
o 

j tP(t - s)eim27rsds = kp(m)eim27rt mn E 7iZ,p = 1, ... 
o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

and the Fourier expansions of u(s), a? (t, s), and ap (t, s). Equivalently, for a smooth 
u we may interpret the integrals in (2) as duality products between elements of 
appropriate Sobolev spaces H-A and HA, e.g. for p = 1,... , q 

Kp(t-s)ap(t, s)u(s)ds = (tip(t - s), ap(t, s)u(s)) 

The Sobolev space HA, A E R, consists of 1-periodic functions (distributions) u 
satisfying 

(z/n2~(m~) \1/2 

11ulkl Tn= S2A 1 11(Tn) 12J) < 00 

where 

{ T rn- }Z. 

It follows from the inequalities i4,?(M)l < c2lmI-j, m E 2, m I 0 (cf.(4)), that the 
operator Ao is bounded from any HA to HA+', A E R (see Section 2). Similarly, 
duae to (5), the operator Ap, 1 < p < q, is bounded from HA to H\+?c+? and 
compact from HA to HA+O, A E R. 

Proposition 1.1. Under conditions (4)-(6), A = Epo AP E L(HA, HA?+a) is a 
Fredholm operator of index 0 for any A E R. Then 

/(A) := {u E HA: Au = 0} C n HOf =: C. 
tCER 

A proof follows from considerations of Section 3. Consequently, assuming (4) - 
(6) and 

(7) v)vC, Av=0 A v=0, 

a (bounded) inverse A-i E IL(HA+0, HA) exists for all A E R. 
Our purpose is to construct fast solvers of the optimal convergence order for 

the problem (1). Introduce the N-dimensional space of 1-periodic trigonometric 
functions 

TN = {VN: VN = S cie127 t, cl E C} 
I7ZN 
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where 

N= {l 2 -< 2 

Assuming f E HI-I?, ,u+a > 2, we construct in O(N log N) arithmetical operations 
approximations UN E TN to u = A lf E H" such that 

(8) IHUN - Ul1,\ < c,,A,,NA1HIIuHI,I -a < A < t. 

For more special equations, a similar problem setting has been examined by 
Amosov [1]. His approach is based on the construction of high order parametrices 
23 for A, i.e. operators 23 E L(HA+?c, HI) such that T = I - BA E I(HA, HY+ ) 
with a sufficiently large -y (-y > 2(,t + a)). The preconditioned equation I3Au = Bf, 
or u = Tu + Bf, was used to approximate ii(m) for large m by (1f)(m); for 
smaller m the approximations to ii(m) were found by trigonometric collocation 
method without use of the preconditioning. A practical restriction of the algorithm 
is caused by difficulties constructing a parametrix of a sufficiently high order /y. 
In our case, without further assumptions about the problem (1), the construction 
fails. Therefore we make use of a simple 23 such that T = I - BA E I(HW, HA?+/3). 
The preconditioned equation I3Au = 13f will be solved by a special version of a 
(fully discrete) Galerkin method in a smaller dimension n (n < N), and a simple 
refinement of the Galerkin solution is used to obtain UN E EN of accuracy (8). 
The matrix form of the method has a band structure compensating the modest 
smoothing properties of T and keeping the computations in O(N log N) arithmetical 
operations. Compared with a direct solution of the system, the properties of the 
algorithm will be improved, involving a two grid iteration method to solve the 
Galerkin equation. 

An interesting question arises: Can similar results be obtained when problem (1) 
is solved directly, without a preconditioning, by a fully discrete Galerkin or colloca- 
tion method? Recently, McLean, Pr6ssdorf, and Wendland (see[12]-[14]) obtained 
nice results concerning the trigonometric Galerkin and collocation methods for a 
certain class of pseudodifferential equations. We also refer to [7], [20], where fully 
discretized methods are examined for problem (1). It seems possible to reorganize 
these methods so that the accuracy (8) will be obtained in 0(N log N) arithmetical 
operations, but we cannot go into details in this paper. In a rather special case of 
the Symm's integral equation this was achieved in [19]; the case is covered also by 
[1] with the simplest preconditioner 23 = Ao-' More generally, if the coefficients a? 
of the main part Ao of A are constant, then it does not matter whether we apply 
the (trigonometric) Galerkin method directly to (1) or to the equation BA = 23f 
with 13 = A-', which is exactly the preconditioner we use in this case (cf. (16)). So 
our results cover also the (fully discretized) Galerkin method applied directly to (1), 
provided that a? are constant. For the collocation method, a similar relation is not 
true, and more sophisticated modifications are needed (see [1]). More specifically, 
in [17] a method of computational complexity 0(N2) using collocation is proposed. 

Our results are based on a superconvergence property of the Galerkin method 
(see (59)). Note that this property does not hold if the Galerkin method is applied 
directly to (1) with non-constant a? (t, t), without a suitable preconditioning. 

Remark 1.1. In some cases where all the functions are analytic, or have isolated 
singularities, the convergence rate is even exponential. For studies in this direction, 
see, e.g., Bialecki [2], Saranen and Vainikko [20], and Stenger [21]. 
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2. INTEGRAL OPERATORS IN SOBOLEV SPACES 

The Sobolev space HA,/, A, p E R, consists of 1-biperiodic functions (distribu- 
tions) v(t, s) satisfying 

/ ) ~~~~~1/2 

HvHlA,/= (\Z l2ATn2ubL(l m) n2 < 00 

where 

'vi(l, m) = j j v(t, s)e-il27rte-im27rsdtds, l,m E7 . 

Lemma 2.1 ([7], [20]). Assume that a(t, s) is C`-smooth and 1-biperiodic, and 

(9) jk(l)l < cll-l, 1 E 2, I 0 . 

Then the operator A defined by 
1 

(10) (Au)(t) ] ti(t - s)a(t, s)u(s)ds 

is bounded from any HA to HA+?, A E R, and the following estimates hold for the 
norm: 

(i) if ao > then for all A E R, with any v > 1/2, 

(1 1) ||AIA||,A+o := ||A||?(H,\,H,\+c) < C,\,O||a|a|max(l,\+alv),max(l,\I,); 

(ii) if a < 0 then (11) remains true for A <_0 and for A > -a, whereas for 
0 < A < -a, again with an arbitrary v > 1/2, 

(12) IIAIIA,A?+o < CA,\,o, min(lalaIl jA+Io+,max(A,v) i IIaImax(IA+aI,V),A+V). 

Counter-examples show that (11) may be violated for 0 < A < -a, a < 0. 

Consequence 2.1 ([7], [20]). If 

(13) tk(l) - k(l - 1)1 < cilI-- 1 E 2,1 57 0, 

and a(t, t) = 0 for all t E R, then A E I(HA, HA+a+?), A E R. 

Proof. We represent A in the form (Au)(t) = f0K1(t-s)a1(t,s)u(s)ds, where 

, (t) = (-t) (1 - ei27t), a, (t, s) = a(t, s)/(1 - ei2r(t-S)). Since a vanishes on the 
diagonal, a, (t, s) is C?-smooth and 1-biperiodic. Since ki (1) = k(l) - k(l - 1), we 
have Iki(l)l < cjll-a-0; see (13). Now the assertion follows from Lemma 2.1. D1 

The Fourier representation of the operator A defined by (10) is given by 

(14) (Au)(t) = 1j 1j j ai(k - m, n - j) k(Tn)(j)eik2,t 
kEZ jCEZ mEZ 

Lemma 2.2. If supp e is finite then the matrix 

(15) A = (akj)k,jEZ, ak1 = S e(k - m, m - j)k(m), 
mEZ 

has a band structure. More precisely, if 

suppec {(kl,k2) z2: I + k2l < 2 rEJAV, 

then akj = O for Ik -jI > r, and consequently AT,, C Tfnr-. 
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Proof. If akj 0 O, then &(k -m, m-j) + O for a m E 2, i.e. Ik-ml + Im-il < r/2, 
implying Ik - iI < r/2. For u,, z fn we have 

(AUn)(k) = akji,u(j), k E 2. 
iEZn 

For k 0 Zn+mr, Z n 2 we have k - jI > ', akj 0 O. Thus, (AUn)(k) = 0 for 
k 0 Zn+2 , i.e. Aun E Tn+r. ? 

3. PRECONDITIONING OF THE PROBLEM 

Let us return to the problem (1). We shall precondition it by the operator 

(16) 23 = [(l/b1)P+ + (1/b2)P-]A-1, 

where b1 and b2 are nonvanishing functions defined in (6) and 

P+u = E il)eil27t P-u = E Z (l)ei27t 
1>0 1<0 

Au = 2(0) + k l)i(l)eil2rt, A-lv = v(O) + 3 [k+(l)]-lf(l)eil2rt. 
1cz,1o0 1 0z,1#o 

Due to the first inequality (4), A E L(HA, H?+a), A-1 I(H\+a, HA), and 13 B 
L(HA+?,HA) for any A E R. 

Lemma 3.1. Under conditions (4)-(6) we have, for A =p=O Ap defined by (2) 
and B defined by (16), 

(17) T :=I -BA Ez (HI, HI?+) VA z R. 

Proof. According to Lemma 2.1 and condition (5), Ap E 12(HA,HA+a+/), p 
1,... , q; therefore I3AP E L(H\, H\+?), p = 1,... ,q. Further, we represent Ao in 
the form Ao = Aoo + AO1, where 

1 

(Aoou)(t) = j[{+(t - s)a+(s, s) + ri? (t - s)a-(s, s)]u(s)ds 

= A(P+blu + P-b2u) + [k+(O) - 1110 ao+(s, s)u(s)ds 

+ [kU(?) -iij - (s, s)u(s)ds, 

(Aolu)(t) = j + (t - s) [a+ (t, s) - a+ (s, s)]u(s)ds 

+ j o (t - s)[a (t,-s) - a-(s, s)]u(s)ds. 

The function ao (t, s) - aO (s, s) vanishes on the diagonal s = t, and Consequence 
2.1 says that AO1 z L(HI, HII,+a+?), BAo1 E LI(HI, H\+? ). Finally, 

BA(P+blu + P-b2u) = (1/bi)P+blu + (1/b2)P b2U 

= u + (1/bj)(P+bj - b,P+)u + (1/b2)(P b2 - b2P )u 

To obtain (17), it now suffices to show that, for any b E CO1, 

P+b-bP+ EL (H, HI`) VA, ,u EI R, 
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or equivalently, 

(18) P'b - bP' L IH(H-A, HA) VA > O. 

Let us prove (18) for P+. We have 

P+ (bu) = [Zb(l - k)ui(k)1 eil27t, bP+u = E {Zb(l - k)ui(k) eil27t, 
1>0 -kEZ lEZ k>O 

and 

P+(bu) - bP+u = ( [ l - k)ui(k)1 eil27t - E [Sb(l - k)ui(k)1 eil27t, 
I 1>0 k<O 1<0 k>O 

IlP+(bu) - bP+ullA l 5IAb(l - k)i(k)) + Ill - 1-k)ui(k) f 

1 >0 k<O 1<0 k>OJ 

In the first sum, 1 - k > 1 > 0 and 1k - 1lkl > 1; therefore 1A < (1 - k)A < 
lkI ki - - __ 

(1 - k)2A\Ikj-A. In the second sum, 1 - k < 1 < 0 and 11Ikl =1IIk > 1; therefore k k 
< 11 - k < 11 - kI2Ak- Thus 

fIP+(bu) - bP+uHA < { 11 - kj2Ak- &(l-k)llf(k) } = IlavHlo, 
lEZ LkEZ 

where for given b and u the functions a and v are defined through their Fourier 

coefficients a(l) = 112A> 1b(l) I) v((k) = kA1 fi (k) k, 1 e I . Further, 

lavllo max a(t)AjvHjo <? j6(l)HjuH-A <K 'yVfbH2A+?HuKj-A, 

where 

( 1-2v) = (1+2 1 )1-2v < > > 

We get 

IIP+(bu) - bP+uIIA < tyvHbII2A?vHUII-A, A > 0? 

proving (18) for P+. For P- the proof is similar. D] 

Lemma 3.2. Under conditions (4), (6) the operator B e L(HA?', HA) has a 

bounded inverse B-1 E L(HA, HA+a) for any A E R. 

Proof. It is well known (see e.g. [4] or [15]) that (6) is a necessary and sufficient 
condition for the existence of bounded inverses to B1 = b1P+ + b2P- and B2 = 

(l/b1)P+ + (1/b2)P- considered as operators in Ho = L2(0, 1). Considering B, 
and B2 as operators in HA, we have (see (18)) 

B1B2 = I-S1, B2B1 = I-S2, 

where S1,S2 e I(HA,HI) with any p > A. We see that 

J(Bi) c A(I-S2) c C' c H?, 
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and consequently /(B1) = {0}. Similarly, AV(B2) = {0}, implying also A/(I-S1) = 
AF(I-S2) = {0}. Since 

B2HA D B2B1HA = (I - S2)HA = HA, 

the operator B2 E L(HA,HA) has a bounded inverse. This together with the 
properties of A mentioned above proves the lemma. C] 

Proof of Proposition 1.1. Assume (4) - (6). Due to Lemmas 3.1 and 3.2 we can 
represent A- = B-1(I - T), and the Fredholm properties of A E L(HA, H+a) 
follow from the compactness of T E L(HA, HA). Further, if Av = 0 for a v E HA, 
then B3Av = 0, v = Tv, v = Tvnri n = 1, 2,... , and v E HA with any u E IlR, due to 
the smoothing property (17) of T. C 

According to Lemmas 3.1 and 3.2, problem (1) is equivalent to the problem 

(19) BAu ==3f 

as well as to the problem 

(20) u=Tu+g, g=Bf, T=I-BAcE2(HA,HA?+). 

We shall use the formulation (19), constructing a discretization of (1) and (20) to 
examine the convergence properties of it. 

4. TRIGONOMETRIC INTERPOLATION 

Here we present some technical tools for discretization of the problem. The 
Fourier projection Pnu of u E H", ut E iR, is defined by 

PnU =E ui(k)e nknt E G n/V 
k EZ, 

(see the notations of Section 1). Obviously, Pn is an orthogonal projection operator 
in any H", ,ut E R. It is clear also that 

(21) flu - PnuJA < (n/2)-81JuJHA, A </. 

The interpolation projection Qnu is defined by the conditions 

QnU 1 fn, (Qnu)n1) = u(jn1), j = 1, ... n, 

for u E H", /t > 2, guaranteeing the continuity of u. It is known (see [1], [18]) that 
2~~~~~~~~~~~~~~~~~ 

IIU- QnUllA < cA,An'-82U11HA, 0 < A < 1u> 

Preparing for the two dimensional case, we first specify the constant cA,A. 

Lemma 4.1. For u E Hl", > 2 we have 

(22) flu - QnU11A < -y(n/2)'-81JuJJA, 0 < A < 

where 

(3(1 2 1/2 (23) itt 2I 2A <0) > -. ~~Y~=~~1?2Z.2) <~~~ 
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Proof. Due to (21) and the equality 

flU - QnufA = flPnu - Qnuf2 ? |(IA-P)ull 

we have to estimate the norm lPnU -Qnu112. It is easy to see that 

( E00& c2i(k + jn), k e Eni 
(Qnu - Pnu)(k) = { 

Ol k CZ\Zn; 

therefore 
2 

IlQnu-Pnu = 1 k2A' f i(k + in) 
kEZn O$AjEz 

k9' ~~~~~~~~~2 

- keZ Oe~ Ik?+jr Ik + jnl VIi(k + jn)2 < e2 lUI12 

where 

2=max - max('nj2I 12~max Y 2 2 n kEZ o: Izk + j nJ|2A _ a n E |j l2t 1< mx<2 1: x jn2t) 

The function 
x 2 x _ _ _ _1 \ A 

X + z 
2A 

( 1+ IV)j I x?+jn2It ?x x-jni2t4 =2((jn 3)2Itt (in )2it' 

increases on [1, n/2]; therefore the maximum is attained at x = n/2, and 

1<x<n/2 OEZz x +ijn 2 ()2() Z1 (2j + 1) 2t? (2j - 1)42A 

( )2(A-tt) 20 1 

j=1 

Thus 

(24) < 2(A- 
j=1 

IlQnU PnUl - ()2) E (22 Alu, 0 < A < t, t> 1/2, 

and together with (21) this yields (22), (23). D] 

For v e HI"'1X2 and ni, n2 e lN, the two dimensional projections Pn1,n2v and 

Qnl,n2v are defined by 

Pn,n2V E E (k, k2 )eik127teik227s , Tn1 T n 2 
ke7EZnl k2E7Zn2 

Q,2v e T~ T2 Q1~v(jin-j,2 ~ )=v(jin-ii7,2ni 1), Qnl,n2W Ernl (fn2 (Qnl,nin2 ) i2n2 12 

ji = l, ... ,ni, j 2 = 1, , -n2- 
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Obviously 

(25) -iv Pn1,n2vllX1,A2 < max ni - 
8A In2) IVIA,2 

A1 < /t1,jA2 ?/1 2 

Lemma 4.2. For v E HI"'A2 /1t > 2, and ,u2 > 

(26) -| Qnl,n2VIII\1,1\2 < 2> 2 IIVII/,tl,/-t2U2 

0 < A1 < /-t1, 0 < A2 < 12, 

where -yA1 and -YI2 are defined by (23). 

Proof. This time we have (cf. the proof of Lemma 4.1) 

|V- Qnl,n2 v1,A2 = -lPnl,n2V Qnl,n2 A1,2 + JIV Pn-,n2 A1,A2 

with 

(Qnl ,n2V -Pn ,n2V)(kj, k2) 

1-jl+1j2 l>l v(kj + jin, , k2 + j2n2), (ki I k2) E Znl X 7-n2l 

o0 for other (k1, k2), 

HlQnl,n2V -PPnl,n2 VH1,A2 ? cn,n2 V 12 , 2 

where 

k2Al k2A2 

= max(k?jr)' k 2 nl,n2 k,EZn vk2EZn2 je + > (ki + jini)2A, (k2 + j2n2 ) 22 

< 62 + ?62 + ?26n2 - l 2 nj Th2 

with 
2Ai k2A2 

k127Z- km?ax c2~' 62 = max k2?jr2I2 ni n2 jk2 + 2n2 12A2~~k27Z~ n klEaZnl 04jEz 
I ki + ji ni 128l k2mEaZ2 O=hE I2+2n1 

Estimating these numbers as in (24) and making use of (25), we obtain (26). The 
constant in (26) can be somewhat reduced. D] 

For a set D c Z2 and v e HI1"I2 we denote 

(27) PDV= E (ki, k2)eikj27rteik22rs. 

(ki ,k2)ED 

Lemma 4.3. Assume that 

(28) j(k1,k2) e 2: kjk2 < C Dn c 22. 

Then forO0 < Al < ,Utl, ? < A2 < /-t2 ,U-t1 - A1 = AU2 - A2 ,U1 > -, ,U2 > v H 21 V A'2 

we have 

(29) ||V-PDnQn,nVH|A1,A2 < ('YAL1 +?'Y4 ( )A2) 4l lVHA1,A2- 
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Proof. Obviously 

|V - PD,2 Qn,nV|hV,A2 ?H 1-AQn,Tvfl,A2 + (1 - PDn)VH|1,A2. 

Due to (28) we still have 

||V-P V|| A < max k Al-ttlA2-112ll < (n) || 

Now, in a rough formulation, (29) follows from (26). To obtain the constant in 
the form (29), one has to revisit the argument of the proof of Lemma 4.2, adding 

|V-PPn,nVH 12 to the term with Ec2 and ||V-PDThVl,A2 to the term with c2 F D 

Estimate (29) allows us to drop a greater part of Fourier coefficients of Qn,nv 
while maintaining the convergence order of the truncated interpolation PDnQn,nV. 

Even the constants in (29) and (26) are equal (as we remarked, actually the constant 
in (26) can be somewhat reduced). 

5. DISCRETIZATION OF THE PROBLEM 

AND COMPUTATIONAL COSTS 

From now on, N, n, 1, m are natural numbers, 

(30) rN- , N No, m-N', 0<p,U,T<1; 

further conditions on p, a, T will be added later. The relation nr NP means that 
c1 ? n/NP ? c2 as N -* oo, where 0 < cl ? c2 <oo. 

We approximate the operator A_ = E AP by the operator Al = Eq=0 Ap,l, 
where 
(31) 

(Ao,lu)(t) = j[i+ (t - s)a+l (t, s) + i,-j(t - s)aU- (t, s)]u(s)ds, 

(AP,i u) (t) = J (t - s)ap, (t, s)u(s)ds, 

aO+ = PQ1Ql,la+, a ,l = PQoQQ,lap, 

{(k1, k2) EZ2 k1k2 < 2} C Ql C (ki,k2) E 2 : Iki + jk2l < 
fl~L~2 2 

2 1 2 

(see (27)). The operator B (see (16)) we approximate by 

(32) I31 = (b+P+ + bP-)A-1, b+ = Ql(l/bl), b- = Ql(l/b2). 

According to (11) we have for A < 0 and for A + a > 0 

flAl - Al IL(HA ,HA\+-) 

F ~~~~~~~~~~~~~q 
< cA,M [f4O1 - 4fA1,A2 ? fla1 -aO a[A1,A2 + E |laP,l - aPIA , 

L ~~~~~~~~p=1 

A1 = max(A? + al, v), A2 = max(KAl, v), v > 1/2, 

and Lemma 4.3 together with the relation 1 N-N yields 

(33) IlAl - AIIL(HA,HA?+) < Cx,rN Vr > 0. 
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For oi < 0, 0 < A < -a we obtain the same results through (12). Making use of 
(22), we also obtain 

(34) 1-1 BIIL(H?+cX,HA) < CA rN-r Vr > 0. 

We propose the following method to find an approximate solution Un,N E TN of 
equation (1): determine the solution un E Tf of the Galerkin equation (cf. (19)) 

(35) PnIAl1Un = Pngl,N, 91,N = I31QNf, 

and refine it by the formula 

(36) Un,N = Un + (PN - Pn)gl,N. 

We also propose to use the following two grid iteration method for solving (35): fix 
an m < n; starting from uo = 0 compute un E Tn, k = 1, 2,... , via the iteration 
formula 

=k- PB1Alu k1 - Pngl,N, (37) Vn =Pn lAtn 1_P9 

un = u (I-m (Pm3l Al) PmVk- 

After a final iteration step we refine the result, putting (cf. (36)) 

(38) Uk,N = Uk + (PN - Pn)gl,N. 

Let us comment on the implementation and computational costs of the methods 
(35), (36) and (37), (38). According to the construction (see (31)) we have 

pp a suppa0 -k2) p=l,... ,q. 

Consequently (see Lemma 2.2), AlTn C Tn+l, and for un G Tn, 

(39) (AlUn)(k) = E akjiu(j)I k eE Zn+l, 
jEZn 

where (cf. (15)) 

a j =,[6,+,I (k - M M -j)ki+ (M) + 6,-, (k -M, M -j)k- (M) 
MEZ 

q 
(40) + , ap,l (k-M, M-j)lkp(M)j, Ik-jl < 2 

p=1 

akj = ?, kA-j j . 

The Fourier coefficients 6,+&(kl1, k2), ,pl1(k1, k2), Ik1l + jk2j < 1/2, coincide with 
the corresponding Fourier coefficients of Ql,laO, Ql,lap. The latter can be found 
from the grid values ao (jl1,j2l ), ap(jl-1,j2l1), j1,J2 = 1,... ,l, by FFT in 

0(12 log 1) = 0(N2o log N) arithmetical operations. To keep this within 0(N log N) 
we set the condition a < 1/2. Further, for a cheap evaluation of sums over M in 
(40), one can utilize the convolution structure of those when k and j vary on a fixed 
diagonal k - j =const. By FFT the entries akj on a diagonal k-j =const can 
be found in 0((n + 1) log(n + 1)) arithmetical operations, and we have to compute 
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min(n, 1 + 1) diagonals. This adds up to 0(NP+? log N) arithmetical operations. 
The conditions 

(41) c<?, p+cT<1 

guarantee that the entries akj, k E Z,+,, j E Zn, are available in 0(N log N) 
arithmetical operations. 

If oa > p then A, = (akj)kEZ?,jjn is a full matrix, and an application of Al to 
a un E Tn by (39) costs, due to (41), (n + l)rn = 0 (NP+f) = 0((N) multiplications 
and additions. If a < p then An is band matrix with band width 1 + 1, and an 
application of Al to un E Tn again costs (n + l)(l + 1) = 0(NP+?) = 0(N). 

The Fourier coefficients of QN f can be found by FFT in 0 (N log N) aritmetical 
operations. After that, using the definitions of A-1 and Pi (see Section 3), we 
find in 0(N) arithmetical operations the Fourier coefficients of P+A-1QNf. Mul- 
tiplying these polynomials respectively by polynomials b+ and adding the results, 
we obtain g1,N = LI3QNf (see (32)). To keep the computations in O(NlogN) op- 
erations, the last multiplications must also be performed by FFT. In this way we 
actually do not need the Fourier coefficients of b+ but only the grid values of l/b1 
and 1/b2. So, the Fourier coefficients of g1,N are available in O(NlogN) arith- 
metical operations. Now Pngl,N and (PN - Pn)gl,N occuring in (35)-(38) can be 
found by simple truncations. A similar scheme can be applied when Blvn E Tn+21 
is computed for vn = Alun E Trn+l Un E Tfn but perhaps it is not the best way. 

Let us present an explicit matrix form of an application of BI to a vn E Tn+l: 

(42) (BiVri)(h) = E bhkbnr(k),- h (E n+2v 
kE7?n+l 

f bt(h- k)[ko%(k)]-1, k>O > 
(43) bhk = bt(h), k = 0 , h E 7-n+21, k EC n+l 

b- (h-k) [no+(k)]-l k < O 
A 

Note that supp 14 C Z1. Under conditions (41) the computation of BL1Vn, Vn E Tn+lv 
via (42) costs (n + 21) (1 + 1) = 0((N) multiplications and additions provided that 
the Fourier coefficients of b+ have been found (what costs only 0(N'log N) by 
FFT). 

The matrix representation of PnB1A,un, un E Tn, follows from (39), (40) and 
(42), (43): 

(44) (Pn BiAl Un)(h) = ChjUfn(j), h (E /n)i 
iEZn 

(45) Chj = , bhkakj, h,j E 7n- 
kC:Zn+l 

The matrix form of the Galerkin method (35) reads as follows: 

(46) , ChUjUfinJ) = g1,N(h), h E n - 

JEZn 

If p ? 3, then the computation of Cn = (chj)h,jEn by (45) using FFT costs 
0(n(n + 1) log(n + 1)) < 0(N) and the solving of (46) by the Gauss method costs 
0(n3) < 0(N) arithmetical operations. If p E (1, 1) and we impose on a the 
condition p + 2a < 1 (implying a < < p), then the costs will be again 0(N). 
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Indeed, both An and Bn are band matrices of band width l + 1; therefore the 
computation of Cn costs 0((nl2) = 0(NP+2,) < 0(N). The matrix Cn is a band 
matrix of band width 21 + 1; therefore the solving of (46) by Gauss method, with 
pivoting along columns under the main diagonal, also costs 0((nl2) < 0C(N). Let 
us summarize, keeping in mind (41): 

Proposition 5.1. If O < P < O, ? < a < 2, or if < p < 1, p + 2a < 1, then 
method (36) with a direct solution of Galerkin's equation (35) can be implemented 
in 0(N log N) arithmetical operations. D 

We are not free in the choice of p so far as we want to obtain an approximation 
Un,N or uk of an optimal convergence order (see Theorem 6.1, condition (49)). 
For p close to 1, the condition p + 2a < 1 allows only very small a > 0. Since 
(33), (34) hold for any a > 0, this does not influence the asymptotic properties 
of the method. To make the method more practical for moderate N, we relax the 
condition p + 2a < 1 by using two grid iterations (37), where the inversions are 
involved in a smaller dimension m < n. In Section 6 we prove that an optimal 
accuracy of UkN defined by (38) is achieved for fixed k which is independent of N 
(see (51)). Therefore, the amount of arithmetical work is determined by the cost 
of one iteration step. Instead of (46), we now have to solve similar systems in the 
dimension m to compute wm = (PmBiAl) 1PmVk E Tm: 

(47) S ChjQr(J) = k1 (h), h E Em) 
j EZm 

where 

(48) Chj = bhkakj, h,j E Zm. 

The analysis of computational costs is similar to the above. Formally, we simply 
must replace n - NP by m - N', i.e. p by T. Keeping (41) in mind, we obtain 

Proposition 5.2. If p E (0,1) and a E (0, 2] satisfy p + a < 1, then, for any 
or E (0, p) satisfying or < I or or + 2a < 1, an iteration step (37) and the refinement 
(38) can be implemented in 0 (N log N) arithmetical operations. O 

Note that the case T > 13 T + 2a < 1 is possible only if a < 3, implying a < T 

and a band structure of Cm = (Chj)h,jZm 

6. OPTIMAL CONVERGENCE OF THE METHODS 

Together with Propositions 5.1 and 5.2, the following theorem contains the main 
message of this paper. 

Theorem 6.1. Let conditions (4) - (7) be fulfilled, and let f E HfI+`, ,u + a > 
Let 

(49) n NP, 
+ 

< p < 

1 NC,l 0 <af < 1, 

and approximate the operators A and B (see (2) and (16)) by A1 and Il3 defined in 
(31) and (32). Then problem (1) has a unique solution u = A-lf E HI', and there 
exists an No such that for N > No the Galerkin method (35) provides a unique 
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polynomial un E Tn, and for its refinement Un,N E TN defined by (36) we have the 
error estirnates 

(50) IlUn,N - UA ? < -a < A <[t 

Furthermore, if we set 

m -N, 0 < T < p, 

there exists an N1 such that for N > N1 and any fixed k satisfying 

1 T /3t+ (51) k > 1- zo 

we have the error estimates 

(52) IIU',N - UIIA < cA,,,NAMflufll, -a < A < ,u, 

where U N E Tn is the refinement (38) of the two grid iteration approximation uk 

defined by (37). 

Remark 6.1. For u C H'M, error estimates (50) and (52) are of optimal order (com- 
pare with the error estimate of the orthogonal projection PNu; see (21)). 

Remark 6.2. Theorem 6.1 puts a condition only on p, leaving a and T free. Choos- 
ing p so that (49) is satisfied, the parameters a and T should be submitted to the 
conditions of Propositions 5.1 and 5.2 to keep the implementation of the methods 
in O (N log N) arithmetical operations. 

Further remarks to Theorem 6.1 concerning conditions (49) and (51), and the 
saturation property of estimates (50) and (52) at A = -oe, are presented after the 
proof of the theorem. 

Proof of Theorem 6. 1. Recall that A C I(HA, HA'?c), B c C(HA?', HA) for any 
A C DR. We shall use the formulation (20) of problem (1): 

(53) u = Tu + g, g = Bf, T = I- BA. 

The operator T E I2(HA, HA) is actually bounded from HA to HA?+1 (see Lemma 
3.1). Together with (21) this implies the inequalities 

(54) Il (I - Pn)THA A < cAn-0, JT(I - Pn)THA,A < cA n-'. 

Let us represent the Galerkin equation (35) in a form similar to (53): 

(55) Un = PnT1Un + Pngl,n, 91,N = BIQNf, T = I- B1A1. 

As a consequence of (33) and (34), 

(56) JJT - TiJA,A < cx,rN-r Vr > 0, A C JR. 

It follows from (54) and (56) that fIT - PnTTI1A,A -* 0 as N - > oo. Since T E 

L(HA, HA) is compact and the homogeneous equation v = Tv has only the trivial 
solution (condition (7)), then I - T is invertible in HA, and the same is true for 
I - PnTT for sufficiently large N, say N > NO. Thus the inverses are uniformly 
bounded: 

(57) I(I-PnT)T-I1A,A < cA, N > No, A E R. 
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For the solutions u and un of (53) and (55) we have 

(I - PnT1)(un - Pnu) = Pn91,N - Pnu + PnT1Pnu 

= Pn(g1,N - g) + Pn(T1 - T)Pu - PT(I - Pn)(I -P) 

and due to (54), (56), and (57) 

lUn- PnUzIj < CA(IIg1,N-gll\ + NNrHlullA + n-rJ'(I-Pn)ull\)I A E R. 

With the help of (22) and (34) we estimate 

11g1,N - gA < ||BI(QNf - f) I + H(Bi - B)f IIA 

(58) < cA(fIQNf - fflA+? + N-rflf flA+a) < cA,tN'- 1f l 11+a 

< c/NA>-1IIul1, 0 < A+a < t+o. 

Using also (21) and (54), we obtain 

flun-Pn8uHA < cA,t,(N\-" + n\-"-")lull/, -a< A A < /t 

or, due to (49), 

(59) lun - PnuIlA < cA,,NA-1'luIH,, -a < A < ,u. 

Finally, 

(60) 1(I - Pn)TuHIA < cA,,nA--' % ITufl,+?3 < cl N'-luII,, A < ut, 

For Un,N defined in (36) and the solution of (53) we have 

Un,N - U = Un - PnU + (PN -Pn)(g1,N - g) - (PN - Pn)Tu - (I - PN)U. 

From (58)-(60) and (21), the assertion (50) of the theorem follows. 
Let us turn to the second part of the theorem. Represent (37) in the form 

uk = SU k-1 + X 

where Sn TIEn -7 Tn and On G Sn are defined by 

Sn = I - (I - Pm)PnBA4 - (PmBiA4) 1PmBiA4 

=1I-(Pn-Pm)(I-T1 )-I-PmT ) - Pm(IT ) 

= (Pn - Pm)Tl + (I - PmTi) PmT(I - Pm), 

n= (Pn - Pm)gl,N + (I - PmTr)TlPmgl,N. 

It follows from (54), (56) and (57) that 

(61) HISnrjt,,, < c,n-m, N > N1 = Non/n. 

Using also (21), we obtain 

(62) flSnIHA,_t < cc_,m>8rA-[Q -a A <A<u, N > N1. 

Here the constant cc,,, may be taken independent of A, since the constants in (54), 
(56) and (57) may be taken uniformly bounded in A on every finite interval, the 
interval [-a, [t] in our case. This can be seen from the interpolation theorem [11] 
for operators in scales of Hilbert spaces, HA in our case. It is easy to check that 
for Un, the solution of (35) and (55), we have Un = SnUn + qn; therefore 

u-Un 
= - = . .. = n(Un -Un) = 

-SnUn 
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With the help of (61) and (62) we estimate 

HIUn -UnmfA < ?|SnIIA,,t|HSnHIju H|Uhn|,u ? cINT( /3 )(cINT/)k l lnl 

For k satisfying (51) this together with (59) yields 

(63) ||Uk -UnIIA ? Ek,NN' 1Hztu ,1, -a < A < ,l, Ek,N 0 as N -x 00. 

Since Uk Un,N U Uk_Uni (52) follows from (50) and (63). 0 

Remark 6.3. If p c (0,1) is not submitted to (49) then, nevertheless, (50) holds 

true for Ao < A < tt where A0 = max (-a, t- 1kPp); to obtain (52) for these A, 

(51) may be replaced by k > 1-L7 APO 

For instance, if a > 0 but we are interested in (50) and (52) only for 0 < A < ut, 

then (49) and (51) may be replaced by the conditions >+L4< p < l and k > 1-7 Ak 

respectively. 

Let us illustrate the above results by means of the specific examples introduced 

in Section 1. 

Example 6.1. We consider the biharmonic single layer equation introduced in 

Example 1.1, where a = 3, ,3 = 1. In this case the preconditioner B has the form 

47r2 4 

(1u) (t) = I (t) 13 2(0) 

4 

2(1)e i27t 
_4 

(-I)e- i27t 
-+ E l (12 _ 

-)ft(l)e 
U2rt 

1 3 1 1> 
Consider the solution u = 4A-1f with the low-order smoothness property u c Ho 

(equivalently f c H3). Now, by Theorem 6.1 we have the approximate solution 

Un,N c TN defined by (36) such that the optimal order estimates (50) are valid for 

-3 < A < 0, if 3 < p < 1 and 0 < cr < 1. In order to compute the approximate 

solution in O(N log N) amount of work, we have to impose the additional condition 

r < 2 (1 - p) < I, if the direct solution by Proposition 5.1 is employed, and 
K 1< - p < I if the two grid iterations by Proposition 5.2 are involved, e.g., 4 

with r = 1/3 (the optimal order of iterations will be achived for k > 7). Now 

consider a smoother exact solution, say, U c H6. In order to have an approximate 

solution (36) of optimal order of accuracy (50) for 0 < A < 6, we require p > 6 by 

using Remark 6.3. To save the O(N log N) amount of work we need additionally 
- < K (1 - p) < I . This is realistic only for very large numbers N (Nl/l14 > 2 if - 2 - ~~14 

N > 16384). The requirements for the two-grid iteration are less stringent: with 

p = 6 we choose r = u 1 c =1 . Then the iteration Uk k > 13, is of optimal order 7 3 3'77 5N' ia re 
for 0 < A < 6. 

Example 6.2. Consider the singular integral equation of Example 1.2 assuming 

(6), (7). We have a = 0 and : = ox, and the preconditioner takes the form B = 

P+ + a1b P-. In this case, where : = 00, we have optimal order approximations a+b ab 

Un,N, U N defined by (36), (38) with any choices 0 < p, o- < 1, 0 < 'r < p (for 

Un,N with all k > 1). To have approximations with O(N log N) amount of work, 

the conditions of Propositions 5.1 or 5.2 have to be imposed on p and cr. 

Remark 6.4. The saturation of estimates (50) and (52) at A = -a is caused by 

the saturation property (see (58) and (22)) lf - QNflA?+a < cX,,_N1-AIf/_+c,, 
(O < A + a < t + ?a) at A = -a. To obtain optimal order estimates (50) and (52) 
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for A < -a, one has use other approximations of g = Bf in (35) - (38) rather than 
91,N =BIQNf. 

We propose two possible approximations of g. Unlike 91,N = I?lQNf, these 
approximations are not so universal. 

Remark 6.5. If the Fourier coefficients of f are known we may put 91,N=I3lPNf. 
In this case error estimates (50) and (52) hold for A0 < A < tt with arbitrary 
A0, ut c R, A0 < [t, provided that 

(64) fH?, f-Ao +a 1 < P < __ k> I t-AO?3 k-Tf A 

No saturation of estimates (50) and (52) towards smaller A occurs. 

Remark 6.6. Assume that, for some j G I/V, the integrations 
1 ~~~~~~~~~~~~~~t 

C-k+1 f(-k+l)(s)dS f(-k)(t) -j [f(-k+l)(s) -C-k+l]dS, 

k=l1,... ,j, 
with f(?) (t) = f(t) can be carried out analytically (or at least the grid values of 
f(-j) are available with a sufficiently high accuracy). Put 

91,N = B31[f(0) + (d/dt) QNf j)]. 

In this case error estimates (50) and (52) hold for Ao < A < tt provided that (64) 
holds with t? + a > 2, -a- j < A < t. 

Here the saturation of estimates (50) and (52) is reduced to A = -a -j. 

Remark 6.7. Theorem 6.1 and Remarks 6.3-6.6 maintain their validity also for the 
Sloan type refinements 

Un,N = TlUn + PN91,N, UnkN = Tluk + PN91,N (Tl = I - 31A1) 

of Un and uk defined respectively by (35) and (37). Although these refinements are 
slightly more complicated than (36) and (38), they still cost O (N log N) arithmeti- 
cal operations submitting a and 'r to conditions of Propositions 5.1 and 5.2. 
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